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Abstract

Integer linear programs arise in many situations, and solving such problems can be

computationally demanding. One way to solve them more efficiently is by exploiting

the symmetry within their formulation. This paper proves that the symmetry group

for the linear programming relaxation of 2-level orthogonal array problems of strength

2 is a particular semidirect product.
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SYMMETRY GROUPS FOR LINEAR PROGRAMMING

RELAXATIONS OF ORTHOGONAL ARRAY PROBLEMS

I. INTRODUCTION

1.1 Motivation

Solving integer linear programs (ILPs) is a common problem, and it is not always

an easy task. In fact, doing so often requires a substantial amount of compuational

time. There are several methods available to solve ILPs more efficiently. In particular,

the Margot ILP solver is able to decrease computation time by orders of magnitude

by taking advantage of symmetry within the formulation of a problem [4]. In order to

take full advantage of the symmetry in a given formulation, one must know as much

about the symmetry group as possible. Ideally, the entire symmetry group will be

known. Geyer [2] developed an algorithm for finding the symmetry group for linear

programming (LP) relaxations of ILPs with equality constraints by using projection

matrices. The goal of this research is to prove a special case of a conjecture resulting

from Geyer [2].

1.2 Research Contribution

This research has proven that the symmetry group for the LP relaxation of an

ILP formulation of a 2-level, k-factor, strength 2 orthogonal array is Sk2 o Sk+1 . At

face value, this result provides the symmetry group for the LP relaxation of certain

ILPs. The methods used to prove this result may also be useful for finding other

such symmetry groups with different strengths and levels. Furthermore, this result
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provides a theoretical verification of Geyer’s [2] algorithm. Finally, the methods

employed in this research may be useful for developing more efficient computational

algorithms.

1.3 Organization of Thesis

This thesis is divided into four chapters and an appendix. Chapter 2 contains a

brief discussion of some literature that is directly related to this research. Chapter

3 covers the original work performed and is divided into three sections. The first

lays the groundwork for the work that follows. The second section walks through the

relatively simple case of a strength one orthogonal array, and the third delves into

the strength two case. Chapter 4 outlines some topics for future research that relate

to this work. The appendix contains the code that was used to validate one of the

proofs.
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II. LITERATURE REVIEW

Experiments are generally intended to allow insight into situations. How an ex-

periment is designed is of great importance to the effectiveness of the experiment and

the relevance of the results. A factorial design is a collection of factors that assume

a finite number of level combinations. If one design can be obtained from another by

permuting runs, factors, or levels, the two designs are said to be isomorphic. For cer-

tain linear models, orthogonal arrays are the most efficient class of factorial designs.

An orthogonal array with N runs (rows), k factors (columns), s levels, and strength

t is denoted OA(N, k, s, t) . The index of such an orthogonal array, λ , is the number

of times every t-tuple appears within each combination of t columns. The index is

typically omitted from notation because λ = N/st .

If an ILP contains any variables that can be permuted without changing the

feasibility and optimality of its solutions, it is said to be symmetric. Margot [4]

defined the symmetry group, G , of an ILP to be

G = {π ∈ Sn|cTx = cTπ(x) and π(x) ∈ F ∀x ∈ F}

where cTx is the objective function of the ILP, and F is the set of all feasible solutions.

Symmetric ILPs can arise from a variety of problem formulations. In particular, ILPs

for enumerating orthogonal arrays are highly symmetric.

Optimal solutions to ILPs are commonly found with branch-and-bound or branch-

and-cut algorithms. In the case of symmetric ILPs, many of the subproblems in the

enumeration tree are isomorphic. As a result, a considerable amount of computational

time is wasted on solving identical problems repeatedly. Thankfully, Margot [4] de-

veloped a solver that is able to decrease and potentially eliminate such redundant

computations by exploiting a subgroup of an ILP’s symmetry group when pruning
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its enumeration tree. Exploiting larger subgroups results in increased reductions in

redundant computations, and the greatest reduction is attained if the full symmetry

group of the ILP is exploited. Hence, it is desirable to find larger subgroups of the

symmetry group of an ILP.

For an ILP with objective function cTx , m×n constraint matrix A , and righthand

side b with 0 ≤ x ≤ d , let A(π, σ) be the matrix found by permuting the rows and

columns of A according σ and π , respectively. The automorphism group of such an

ILP is

G(A,b, c,d) = {π ∈ Sn|π(c) = c, π(d) = d, and ∃σ ∈ Sm : A(π, σ) = A, σ(b) = b}

where σ preserves equalities and inequalities. Clearly, G(A,b, c,d) ≤ G , and com-

putational experiments suggest that efficiency can be improved by several orders of

magnitude if Margot’s solver is used with G(A,b, c,d) on highly symmetric ILPs [4].

Because the makeup of the symmetry group, G , is determined by the ILP’s

feasible set, identifying all symmetries in an ILP is quite difficult and remains an

open problem. Margot [4] proved that deciding if G = Sn is NP-Complete. Therefore,

finding G for any given ILP is NP-Hard. In order to find many of the symmetries in

an ILP, one can simply find the symmetry group of the LP relaxation of the ILP. The

LP relaxation symmetry group, GLP is the set of all permutations of variables that

send LP feasible points to LP feasible points with the same objective function value.

For an LP relaxation without equality constraints where each constraint in Ax ≤ b

is a facet (non-redundant), GLP = G(A,b, c,d) . Let F(k, s, t) and F(k, s, t)LP be

the sets of feasible solutions of an ILP and its LP relaxation, respectfully. Note that

F(k, s, t) ⊆ F(k, s, t)LP , so GLP ≤ G .

For an LP relaxation with equality constraints, G(A,b, c,d) ⊆ GLP . Geyer [2]

developed an algorithm for finding GLP of such an LP. Furthermore, Geyer [2] ob-
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served that G(A,b, c,d) ⊂ GLP for the LP relaxation of an ILP formulation with

equality constraints for finding OA(N, k, 2, t) when t is even. Geyer, Bulutoglu, and

Rosenberg [3] explicitly found G(A,b, c,d) for this formulation. They also found GLP

for a formulation without equality constraints. This thesis verifies Geyer’s compu-

tational observations by explicitly finding GLP for an ILP formulation with equality

constraints. The equality constraints of this ILP formulation are linear combinations

of those of the ILP formulation with equalities in [3]. Furthermore, both ILPs have

the same number of non-redundant equality constraints. Hence, one can go back and

forth between the two ILP formulations by applying a sequence of row operations to

the equality constraints of each. This implies that the feasible sets of the LP relax-

ations of these ILP formulations are the same, so GLP must also be the same for the

two ILPs.

The ILP formulation used in this thesis stems from the concept of J-characteristics.

Let the frequency vector, f , of a 2-level factorial design, D , have the frequency of

each of the 2k possible factor level combinations as its entries. Hence, f determines D

up to reordering of factor level combinations. For a 2-level design, D , with N runs

(factor level combinations) and k factors, J-characteristics are given by

Jl =
N∑
i=1

∏
j∈l

dij

for l ⊆ Zk . It has been shown that D is uniquely determined by its J-characteristics

up to reordering of its runs; furthermore, D is an orthogonal array of strength t if

and only if Jl = 0 for all l ⊆ Zk with |l| ≤ t , where l 6= ∅ [7].
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III. ORIGINAL WORK

3.1 Preliminary Steps

Let 1 be the column vector of length 2k for which every entry is one. For i =

1, . . . , k , let xi be the ith column of the k-factor, 2-level (±1) full factorial design.

For distinct i1, . . . , ij ∈ {1, . . . , k} , let xi1,...,ij represent the j-factor interaction term

given by the Hadamard product xi1 ◦ · · · ◦ xij .

Consider the equation

Mf = J (1)

from [7], where M is the
t∑
i=0

(
k
i

)
by 2k matrix

M =



1T

xT1
...

xTk

xT1,2
...

xTk−t+1,...,k


J is the quasi-lexicographically ordered J-characteristic vector with entries Jl for

|l| ≤ t , and f is the frequency vector of a hypothetical OA(N, k, 2, t) . Then by the

result in [7]

J =



N

0

...

0


6



Our goal is to find the subgroup of the permutation group S2k that sends feasible

solutions (f ∈ Q2k

≥0) to feasible solutions. This is the symmetry group of the LP

relaxation of the ILP based on Equation 1, where the objective function is taken to

be the zero vector. The equality constraints of this ILP are linear combinations of

those of the orthogonal array defining ILP in [3]. Both ILPs have the same inequality

constraints, and each ILP has
t∑
i=0

(
k
i

)
non-redundant equality constraints. Hence, both

ILPs have the same LP relaxation feasible set, and this implies that both have the

same LP relaxation symmetry group. From this point on, we shall refer to this group

as G .

Theorem 1 The symmetry group G is precisely the intersection of the automorphism

group of the row space of M and the permutation group S2k , written Aut(Row(M))∩

S2k . That is, G is the set of permutations that preserve Row(M) .

Proof Observe that

f∗ =


N
2k

...

N
2k


is a particular solution to Equation 1. As such, every solution f can be written in the

form f∗ + f ′ where f ′ ∈ Null(M) . Let g ∈ G be arbitrary. Then g(f) is a solution to

Equation 1. That is,

Mg(f) = Mg(f∗ + f ′) = J

Because g ∈ G ≤ S2k ,

M[g(f∗) + g(f ′)] = M[f∗ + g(f ′)] = J

and thus

Mf∗ + Mg(f ′) = J + Mg(f ′) = J
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Therefore,

Mg(f ′) = 0

so we see that g(f ′) ∈ Null(M) which means g must preserve Null(M) . Because

g ∈ G was arbitrary, we have shown G ≤ Aut(Null(M)) ∩ S2k .

Now let h ∈ Aut(Null(M)) ∩ S2k be arbitrary. Then

Mh(f) = Mh(f∗ + f ′)

= M[h(f∗) + h(f ′)]

= M[f∗ + h(f ′)]

= Mf∗ + Mh(f ′)

= J + 0

= J

Hence, h ∈ G , and because h was arbitrary, Aut(Null(M)) ∩ S2k ≤ G . Noting

that Aut(Null(M)) = Aut(Row(M)) , we conclude that G = Aut(Null(M))∩S2k =

Aut(Row(M)) ∩ S2k .

3.2 The Symmetry Group for the Strength One Case

Before investigating the symmetry group for a strength two orthogonal array, it

is only natural that we should address the strength one case. As such, for now we

assume an OA(N, k, 2, 1) in Equation 1. Let

B = {1,x1, . . . ,xk}

Clearly, B is an orthogonal basis for Row(M) . For all g ∈ G , we know g(B) must also

be an orthogonal basis for Row(M) because by Theorem 1, g ∈ Aut(Row(M))∩S2k ,
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and elements of S2k preserve angles. Furthermore, for every x ∈ B , we know that

g(x) can be represented uniquely as a linear combination of the elements of B . That

is,

g(x) = λ01 + λ1x1 + · · ·+ λkxk (2)

Lemma 1 Let x ∈ B . If x = 1 in Equation 2, then λ0 = 1 , and λi = 0 for

i = 1, . . . , k . Otherwise, λ0 = 0 .

Proof Suppose x = 1 . Because g ∈ G ≤ S2k , g(1) = 1 which uniquely satisfies

Equation 2. For i = 1, . . . , k , we know g(xi) must be orthogonal to g(1) = 1 , so

λ0 = 0 whenever x 6= 1 .

Lemma 2 If {x′1, . . . ,x′k} is obtained from {x1, . . . ,xk} , the columns of the full

factorial 2k design, by permuting rows, then there exists a permutation σ ∈ Sk such

that for all i ∈ {1, . . . , k} satisfying x′i ∈ span(x1, . . . ,xk) , x′i = ±xσ(i) .

Proof Let {x′1, . . . ,x′k} is obtained from {x1, . . . ,xk} , the columns of the full fac-

torial 2k design, by permuting rows. Suppose x′i ∈ span(x1, . . . ,xk) . Then x′i =

λ1x1 + · · ·+ λkxk , and we have the system of equations

λ1 + · · · +λk = ±1

λ1 + · · · −λk = ±1

...
. . .

...
...

−λ1 − · · · −λk = ±1

Subtracting the second equation from the first equation gives λk ∈ {0,±1} . Choosing

other pairs of equations similarly yields λj ∈ {0,±1} for j = 1, . . . , k . Because B is

9



an orthogonal set, the Pythagorean Theorem gives

‖x′i‖2 =
k∑
j=1

‖λjxj‖2

=
k∑
j=1

(|λj|‖xj‖)2

=
k∑
j=1

|λj|2‖xj‖2

=
k∑
j=1

λ2
j‖xj‖2

Because row permutations are norm-preserving, ‖x′i‖ = 2k = ‖xj‖ for j = 1, . . . , k .

Thus,
k∑
j=1

λ2
j = 1

Because λj ≤ {0,±1} for j = 1, . . . , k , there is exactly one nonzero λj ∈ {±1} ,

and x′i = ±xj . Row permutations also preserve orthogonality, so for every distinct

i ∈ {1, . . . , k} such that x′i ∈ span(x1, . . . ,xk) , there is a unique j ∈ {1, . . . , k}

satisfying x′i = ±xj . Thus, there exists a permutation σ ∈ Sk such that x′i = ±xσ(i)

for all i ∈ {1, . . . , k} such that x′i ∈ span(x1, . . . ,xk) .

Lemma 3

|G| ≤ 2kk!

Proof Let g ∈ G be arbitrary. From Lemma 1, we have that g(1) = 1 , and

g(xi) = λ1x1 + · · ·+ λkxk for i = 1, . . . , k . Now by Lemma 2 we know there exists a

permutation σ ∈ Sk such that x′i = ±xσ(i) for i = 1, . . . , k . That is, g is essentially a

signed permutation of the k main effects, so g is one of at most 2kk! elements in G .

Next, by finding a subgroup of G that attains the upper bound on size, we de-

termine the size and the structure of G . We first introduce some terminology and
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notation as given by Rotman [6] on pages 167 and 172.

Definition Let K be a (not necessarily normal) subgroup of a group G . Then a

subgroup Q ≤ G is a complement of K in G if K ∩Q = 1 and KQ = G .

Definition A group G is a semidirect product of K by Q , denoted by G = KoQ ,

if K E G and K has a complement Q′ ∼= Q . One also says that G splits over K .

Definition Let D and Q be groups, let Ω be a finite Q-set, and let K =
∏

ω∈Ω Dω ,

where Dω
∼= D for all ω ∈ Ω . Then the wreath product of D by Q , denoted by

D oQ (or by D wr Q), is the semidirect product of K by Q , where Q acts on K by

q(dω) = (dqω) for q ∈ Q and (dω) ∈
∏

ω∈ΩDω . The normal subgroup K of D o Q is

called the base of the wreath product .

In the factorial desing setting, Sk is the permutation group of k factors. The

multiplicative group {±1} that multiplies columns is isomorphic to S2 . Naturally,

Sk2 is the direct product of k copies of S2 . We now see that Sk2 is the base of S2 oSk .

Lemma 4

Sk2 E S2 o Sk

Proof Per the definition of the wreath product, Sk acts on Sk2 by permuting the

entries of each {±1}k vector in Sk2 . Let φ ∈ Sk2 and σ ∈ Sk be arbitrary. Clearly,

σφσ−1 ∈ Sk2 . Furthermore, σ−1φσ ∈ Sk2 , and σ(σ−1φσ)σ−1 = φ . Thus, σSk2σ
−1 = Sk2

for all σ ∈ Sk , so Sk2 E Sk2 o Sk = S2 o Sk .

This wreath product is the set of all signed permutations of xi for i = 1, . . . , k

from the full factorial 2k design, where xT1 , . . . ,x
T
k constitute rows of M . We shall

see that this group is a subgroup of G . Hence, by Lemma 3, it is G .
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Theorem 2

G = S2 o Sk

Proof Consider an arbitrary element of S2 o Sk . We know it can be written in the

form φσ where φ ∈ Sk2 and σ ∈ Sk thanks to Lemma 4. Clearly, permuting the k

rows xT1 , . . . ,x
T
k of M will preserve the full factorial 2k design as will negating any

of these k rows. Hence, φσ ∈ S2k . Furthermore, the signed permutation φσ clearly

preserves Row(M) , so φσ ∈ Aut(Row(M)) . Because φσ ∈ S2 o Sk was arbitrary, we

know S2 o Sk ≤ G = Aut(Row(M)) ∩ S2k . Finally, |S2 o Sk| = |Sk2 ||Sk| = 2kk! which

is the upper bound for |G| , so G must be exactly S2 o Sk .

Corollary 1

|G| = 2kk!

Proof As a direct result of Theorem 2, we have |G| = |S2 o Sk| = 2kk! .

3.3 The Symmetry Group for the Strength Two Case

From this point forward, we assume an OA(N, k, 2, 2) in Equation 1. As in the

strength one case, let

B = {1,x1, . . . ,xk,x1,2, . . . ,xk−1,k}

Once again, B is an orthogonal basis for Row(M) , and for all g ∈ G , we know g(B)

must also be an orthogonal basis for Row(M) because g ∈ Aut(Row(M)) ∩ S2k as

given by Theorem 1. Also, for every x ∈ B , we know that g(x) can be represented

uniquely as a linear combination of the elements of B . In this case,

g(x) = λ01 + λ1x1 + · · ·+ λkxk + λ1,2x1,2 + · · ·+ λk−1,kxk−1,k (3)

12



Similar to the strength one case above, we will arrive at the conclusion that for

any x ∈ B , every λ in Equation 3 must be zero except for one, which must have an

absolute value of one. The following several lemmas serve to lead us to this conclusion.

Lemma 5 Let x ∈ B . If x = 1 in Equation 3, then λ0 = 1 , and λi = 0 for

i = 1, . . . , k, (1, 2), . . . , (k − 1, k) . Otherwise, λ0 = 0 .

Proof Suppose x = 1 . Because g ∈ G ≤ S2k , g(1) = 1 which uniquely satisfies

Equation 3. For i = 1, . . . , k, (1, 2), . . . , (k− 1, k) , we know g(xi) must be orthogonal

to g(1) = 1 , so λ0 = 0 whenever x 6= 1 .

Lemma 6 Let x ∈ B . If x 6= 1 in Equation 3, then λi ∈ {0,±0.5,±1} for i =

1, . . . , k, (1, 2), . . . , (k − 1, k) .

Proof Suppose x 6= 1 . Then Equation 3 becomes g(x) = λ1x1 + · · · + λkxk +

λ1,2x1,2 + · · · + λk−1,kxk−1,k . Because these basis vectors are the columns of the full

factorial 2k design and the corresponding 2-factor interactions obtained by taking the

appropriate pairwise Hadamard products of the individual columns (main effects), we

have the system of equations

λ1 + · · · +λk +λ1,2 + · · · +λ1,k + · · · +λk−1,k = ±1

...
. . .

...
...

. . .
...

. . .
...

...

λ1 − · · · −λk −λ1,2 − · · · −λ1,k + · · · +λk−1,k = ±1

−λ1 + · · · +λk −λ1,2 − · · · −λ1,k + · · · +λk−1,k = ±1

...
. . .

...
...

. . .
...

. . .
...

...

−λ1 − · · · −λk +λ1,2 + · · · +λ1,k + · · · +λk−1,k = ±1

Subtracting the last equation from the first gives λ1 + · · ·+λk ∈ {0,±1} . Taking the

difference of the middle equations likewise provides λ1−· · ·−λk ∈ {0,±1} . Summing

these two expressions results in the conclusion λ1 ∈ {0,±0.5,±1} . Choosing other
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sets of equations similarly yields λi ∈ {0,±0.5,±1} for i = 1, . . . , k, (1, 2), . . . , (k −

1, k) .

Lemma 7 Let x ∈ B and g ∈ G . If x 6= 1 in Equation 3, then either g(x) = ±xi

for i ∈ {1, . . . , k, (1, 2), . . . , (k − 1, k)} or g(x) = ±0.5xa ± 0.5xb ± 0.5xc ± 0.5xd for

distinct a, b, c, d ∈ {1, . . . , k, (1, 2), . . . , (k − 1, k)} .

Proof Suppose x 6= 1 . Because B is an orthogonal set, the Pythagorean Theorem

gives

‖g(x)‖2 =
∑
i

‖λixi‖2

=
∑
i

(|λi|‖xi‖)2

=
∑
i

|λi|2‖xi‖2

=
∑
i

λ2
i ‖xi‖2

We note that g ∈ S2k is norm-preserving, so ‖g(x)‖ = 2k = ‖xi‖ for i =

1, . . . , k, (1, 2), . . . , (k − 1, k) . Thus,

∑
i

λ2
i = 1

Clearly, not every λi can be zero. If λi ∈ {±1} for some i ∈ {1, . . . , k, (1, 2), . . . , (k−

1, k)} , then λj = 0 for all j ∈ {1, . . . , k, (1, 2), . . . , (k − 1, k)} such that i 6= j .

Otherwise, there must be distinct a, b, c, d ∈ {1, . . . , k, (1, 2), . . . , (k− 1, k)} such that

λa, λb, λc, λd ∈ {±0.5} , and every other λ is zero. That is, either g(x) = ±xi for

i ∈ {1, . . . , k, (1, 2), . . . , (k−1, k)} or g(x) = ±0.5xa±0.5xb±0.5xc±0.5xd for distinct

a, b, c, d ∈ {1, . . . , k, (1, 2), . . . , (k − 1, k)} .

Lemma 8 Let x ∈ B and g ∈ G . If g(x) is of the second form given in Lemma 7,
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then g(x) = ±0.5xa,b ± 0.5xa,c ± 0.5xb ± 0.5xc for distinct a, b, c ∈ {1, . . . , k} .

Proof Suppose g(x) = ±0.5xa ± 0.5xb ± 0.5xc ± 0.5xd for distinct a, b, c, d ∈

{1, . . . , k, (1, 2), . . . , (k−1, k)} . Clearly, xa , xb , xc , and xd cannot all be main effects,

for the full factorial design will ensure some entry of g(x) equals 2 /∈ {±1} . Therefore,

at least one 2-factor interaction must be present in the linear combination. Because

there are more such linear combinations than would be prudent to check manually, we

take advantage of R software [5] at this stage of the proof. The code used for this step

is contained in the appendix. By creating every essentially unique linear combination

containing at least one 2-factor interaction term and checking whether they satisfy

a basic requirement, we rule out all possibilities except those of one particular form.

Specifically, by ruling out each linear combination where the minimum and maximum

entries in the resulting vector are not −1 and 1 , respectively, we eliminate all linear

combinations except those of the form ±0.5xa,b ± 0.5xa,c ± 0.5xb ± 0.5xc for distinct

a, b, c ∈ {1, . . . , k} .

It is clear that k ≥ 3 in order for the form in Lemma 8 to be viable.

Lemma 9 Let x ∈ B and g ∈ G . If for every i ∈ {1, . . . , k} , g(xi) 6= ±0.5xa,b ±

0.5xa,c ± 0.5xb ± 0.5xc for distinct a, b, c ∈ {1, . . . , k} , then g(x) cannot be of the

form in Lemma 8.

Proof Recall from Lemma 5 that g(1) = 1 . Suppose that for every i ∈ {1, . . . , k} ,

we have g(xi) 6= ±0.5xa,b ± 0.5xa,c ± 0.5xb ± 0.5xc for distinct a, b, c ∈ {1, . . . , k} .

Then we know from Lemmas 7 and 8 that for every i ∈ {1, . . . , k} , there exists

some j ∈ {1, . . . , k, (1, 2), . . . , (k− 1, k)} such that g(xi) = ±xj . Because g preserves

Hadamard products, for every i ∈ {(1, 2), . . . , (k − 1, k)} , there exists some j ∈

{1, . . . , k, (1, 2), . . . , (k − 1, k)} such that g(xi) = ±xj . Hence, for every x ∈ B ,

g(x) 6= ±0.5xa,b ± 0.5xa,c ± 0.5xb ± 0.5xc for distinct a, b, c ∈ {1, . . . , k} .
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Lemma 10 Let g ∈ G . If for some i ∈ {1, . . . , k} , g(xi) = ±0.5xa,b ± 0.5xa,c ±

0.5xb±0.5xc for distinct a, b, c ∈ {1, . . . , k} , then there must exist some j ∈ {1, . . . , k}

with i 6= j such that g(xj) = ±0.5xa′,b′±0.5xa′,c′±0.5xb′±0.5xc′ for distinct a′, b′, c′ ∈

{1, . . . , k} .

Proof Suppose there exists some i ∈ {1, . . . , k} , g(xi) = ±0.5xa,b±0.5xa,c±0.5xb±

0.5xc for distinct a, b, c ∈ {1, . . . , k} . By way of contradiction, suppose there is no

j ∈ {1, . . . , k} with i 6= j such that g(xj) = ±0.5xa′,b′ ± 0.5xa′,c′ ± 0.5xb′ ± 0.5xc′

for distinct a′, b′, c′ ∈ {1, . . . , k} . Then from Lemma 6 we know that for every

j ∈ {1, . . . , k} with i 6= j , there exists some l ∈ {1, . . . , k, (1, 2), . . . , (k − 1, k)} such

that g(xj) = ±xl . Because g preserves Hadamard products, g(xi) ◦ ±xl must also

take on a viable form, and this implies that xl ∈ {xa,xb,c} . There can only be one

such xj because if there were more than one, their Hadamard product would be sent

to something in {±1,±xa,b,c} . But that means only two main effects (xi and xj)

get sent to viable forms, which contradicts Lemma 7. Thus, there must exist some

j ∈ {1, . . . , k} with i 6= j such that g(xj) = ±0.5xa′,b′ ± 0.5xa′,c′ ± 0.5xb′ ± 0.5xc′ for

distinct a′, b′, c′ ∈ {1, . . . , k} .

Lemma 11 Let g ∈ G . If there exist distinct i, j ∈ {1, . . . , k} such that g(xi) =

±0.5xa,b±0.5xa,c±0.5xb±0.5xc for distinct a, b, c ∈ {1, . . . , k} and g(xj) = ±0.5xa′,b′±

0.5xa′,c′ ± 0.5xb′ ± 0.5xc′ for distinct a′, b′, c′ ∈ {1, . . . , k} , then {a, b, c} = {a′, b′, c′} .

Proof Suppose there exist distinct i, j ∈ {1, . . . , k} such that g(xi) = ±0.5xa,b ±

0.5xa,c±0.5xb±0.5xc for distinct a, b, c ∈ {1, . . . , k} and g(xj) = ±0.5xa′,b′±0.5xa′,c′±

0.5xb′ ± 0.5xc′ for distinct a′, b′, c′ ∈ {1, . . . , k} . We proceed by way of contradiction

and suppose that {a, b, c} 6= {a′, b′, c′} . That is, |{a, b, c} ∩ {a′, b′, c′}| < 3 . We
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observe that

g(xi,j) = ±0.25xa,b,a′,b′ ±0.25xa,b,a′,c′ ±0.25xa,b,b′ ±0.25xa,b,c′

±0.25xa,c,a′,b′ ±0.25xa,c,a′,c′ ±0.25xa,c,b′ ±0.25xa,c,c′

±0.25xb,a′,b′ ±0.25xb,a′,c′ ±0.25xb,b′ ±0.25xb,c′

±0.25xc,a′,b′ ±0.25xc,a′,c′ ±0.25xc,b′ ±0.25xc,c′

(4)

(Case 1: |{a, b, c} ∩ {a′, b′, c′}| = 0) Equation 4 clearly is not of a valid form.

(Case 2: |{a, b, c} ∩ {a′, b′, c′}| = 1) If a 6= a′ , 4-factor interaction terms will

remain in Equation 4, so it will not be of a valid form. Suppose a = a′ . Even if the

3-factor interaction terms were to cancel, the remaining 2-factor interaction terms are

insufficient for Equation 4 to be of a valid form.

(Case 3: |{a, b, c} ∩ {a′, b′, c′}| = 2) If a 6= a′ , at least one 4-factor interaction

term will remain in Equation 4, so it will not be of a valid form. Suppose a = a′ .

Without loss of generality, also suppose b = b′ . Even if the 3-factor interaction terms

and the 1 terms were to cancel, the remaining 2-factor interaction terms and main

effect terms are insufficient for Equation 4 to be of a valid form.

This contradicts Equation 4 being of a valid form, so we conclude that {a, b, c} =

{a′, b′, c′} .

Lemma 12 If k ≥ 4 , and if x 6= 1 in Equation 3, then g(x) = ±xi for i ∈

{1, . . . , k, (1, 2), . . . , (k − 1, k)} .

Proof Let k ≥ 4 , and x 6= 1 in Equation 3. By way of contradiction, suppose

g(x) = ±0.5xa,b±0.5xa,c±0.5xb±0.5xc for distinct a, b, c ∈ {1, . . . , k} . From Lemma

9, we know there must be some i ∈ {1, . . . , k} such that g(xi) = ±0.5xa′,b′±0.5xa′,c′±

0.5xb′ ± 0.5xc′ for distinct a′, b′, c′ ∈ {1, . . . , k} . Lemma 10 guarantees there will be

another main effect sent to a similar form by g , and Lemma 11 tells us it will be built

from the same three distinct main effects and their three distinct 2-factor interactions.
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At most one main effect could be sent by g to a form other than that just described

as noted in the proof of Lemma 10. Now we have at least one more main effect to

consider, and it must be sent to a form similar to that given above and also built from

the same three main effects and their three distinct 2-factor interactions. But now we

have four main effects that are sent to linear combinations of six orthogonal vectors,

and the six resulting 2-factor interactions will necessarily also be sent by g to linear

combinations of those same six orthogonal vectors (owing to the properties of the

Hadamard product). This means that the ten new vectors cannot all be orthogonal,

which contradicts g ∈ G . Hence, g(x) 6= ±0.5xa,b ± 0.5xa,c ± 0.5xb ± 0.5xc for

distinct a, b, c ∈ {1, . . . , k} . Now from Lemmas 8 and 7, we have g(x) = ±xi for

i ∈ {1, . . . , k, (1, 2), . . . , (k − 1, k)} .

Lemma 13 Let k ≥ 4 . Then

|G| ≤ 2k(k + 1)!

Proof Let g ∈ G be arbitrary. Note that because g preserves Hadamard products,

knowing how it acts on the main effects will determine how it acts on all of B . From

Lemma 12, we know g(x1) = ±xi for i ∈ {1, . . . , k, (1, 2), . . . , (k − 1, k)} . Because

g(x1,2) must be of a similar form, the possibilities for g(x2) are restricted depending

upon g(x1) . If g(x1) = ±xi for i ∈ {1, . . . , k} , then g(x2) = ±xl for l ∈ {1, . . . , i−

1, i + 1, . . . , k, (1, i), . . . , (i − 1, i), (i, i + 1), . . . , (i, k)} . Otherwise, g(x1) = ±xi,j for

i < j and i, j ∈ {1, . . . , k} , so g(x2) = ±xl for l ∈ {i, j, (1, i), (1, j), . . . , (i− 1, i), (i−

1, j), (i, i+ 1), (i+ 1, j), . . . , (i, j − 1), (j − 1, j), (i, j + 1), (j, j + 1), . . . , (i, k), (j, k)} .

To determine how many distinct possibilities exist, we shall consider four cases, based

on the forms of g(x1) and g(x2) , respectively.

(Case 1: main effect, main effect) Suppose g(x1) = ±xi for i ∈ {1, . . . , k} and
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g(x2) = ±xl for l ∈ {1, . . . , i−1, i+1, . . . , k} . Then there are 2k possibilities for g(x1)

and 2(k−1) for g(x2) . All of the (k−2) remaining main effects must be sent to plus or

minus the other (k−2) main effects. That is, there are (2k)(2(k−1))(2k−2(k−2)!) =

2kk! distinct possibilities.

(Case 2: main effect, 2-factor interaction) Suppose g(x1) = ±xi for i ∈ {1, . . . , k}

and g(x2) = ±xl for l ∈ {(1, i), . . . , (i − 1, i), (i, i + 1), . . . , (i, k)} . Then there are

2k possibilities for g(x1) and 2(k − 1) for g(x2) . All of the (k − 2) remaining main

effects must be sent to plus or minus the other (k − 2) viable 2-factor interactions.

That is, there are (2k)(2(k − 1))(2k−2(k − 2)!) = 2kk! distinct possibilities.

(Case 3: 2-factor interaction, main effect) Suppose g(x1) = ±xi,j for i < j and

i, j ∈ {1, . . . , k} and g(x2) = ±xl for l ∈ {i, j} . Then there are 2
(
k
2

)
possibilities

for g(x1) and 2(2) for g(x2) . All of the (k − 2) remaining main effects must be sent

to plus or minus the other (k − 2) viable 2-factor interactions. That is, there are

(2
(
k
2

)
)(2(2))(2k−2(k − 2)!) = 2k

(
k
2

)
(2)(k − 2)! distinct possibilities.

(Case 4: 2-factor interaction, 2-factor interaction) Suppose g(x1) = ±xi,j for i < j

and i, j ∈ {1, . . . , k} and g(x2) = ±xl for l ∈ {(1, i), (1, j), . . . , (i−1, i), (i−1, j), (i, i+

1), (i+1, j), . . . , (i, j−1), (j−1, j), (i, j+1), (j, j+1), . . . , (i, k), (j, k)} . Then there are

2
(
k
2

)
possibilities for g(x1) and 2(2k− 4) for g(x2) . All of the (k− 2) remaining main

effects must be sent to plus or minus the other (k−3) viable 2-factor interactions and

the lone viable main effect x{i,j}∩l . That is, there are (2
(
k
2

)
)(2(2k−4))(2k−2(k−2)!) =

2k
(
k
2

)
(2k − 4)(k − 2)! distinct possibilities.
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Therefore, the total number of possibilities for all cases is

2kk! + 2kk! + 2k
(
k

2

)
(2)(k − 2)! + 2k

(
k

2

)
(2k − 4)(k − 2)!

= 2k(k − 2)!

(
2

[
k(k − 1) +

(
k

2

)
+

(
k

2

)
(k − 2)

])
= 2k(k − 2)!

(
2

[
k(k − 1) +

(
k

2

)
(k − 1)

])
= 2k(k − 1)!

(
2

[
k +

(
k

2

)])
= 2k(k − 1)!(2k + k(k − 1))

= 2k(k)!(2 + k − 1)

= 2k(k + 1)!

Thus, g is one of at most 2k(k + 1)! elements in G .

Theorem 3 Let k ≥ 4 . Then

G = Sk2 o Sk+1

Proof Let R = 〈ρ1, . . . , ρk〉 where ρi acts on the full factorial design by sending

(x1, . . . ,xi, . . . ,xk) to (x1,i, . . . ,xi, . . . ,xi,k) for i = 1, . . . , k . Note that elements of

R preserve the full factorial design as well as Row(M) , so R ≤ G . Furthermore, for

i = 1, . . . , k , ρ−1
i = ρi . For any distinct i, j ∈ {1, . . . , k} , ρiρjρi simply permutes

xi and xj within the full factorial design, so clearly Sk ≤ R . Now we see that

ρjρiSk = ρiSk for distinct i, j ∈ {1, . . . , k} , so there are exactly k+ 1 left cosets of Sk

within R , and together these constitute the entirety of R . Hence, R ∼= Sk+1 . Letting

φ ∈ Sk2 be arbitrary, we note that for any i = 1, . . . , k , ρ−1
i = ρi , ρ−1

i φρi = φ′ where

φ′ ∈ Sk2 , and ρ−1
i φ′ρi = φ . Together with this information, Lemma 4 makes it clear

that Sk2 E Sk2 oSk+1 . Now Sk2 oSk+1 ≤ G , and |Sk2 oSk+1| = |Sk2 ||Sk+1| = 2k(k+ 1)!
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which is the upper bound for |G| , so G must be exactly Sk2 o Sk+1 .

Corollary 2 Let k ≥ 4 . Then

|G| = 2k(k + 1)!

Proof As a direct result of Theorem 3, we have |G| = |Sk2 o Sk+1| = 2k(k + 1)! .

Note that when k = 3 , the result above does not hold. For example, consider the

permutation g ∈ G such that

g(x1) = 0.5x1,2 + 0.5x1,3 + 0.5x2 − 0.5x3

g(x2) = 0.5x1,2 + 0.5x1,3 − 0.5x2 + 0.5x3

g(x3) = x1

Because this permutation sends main effects to forms other than those which were

viable for k ≥ 4 , we conclude |G| > 23(3+1)! = 192 . This observation is corroborated

by the Geyer [2] algorithm and GAP [1], which prove that in this case |G| = 1152 ,

and G ∼= (S4 × S4) o S2 .
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IV. TOPICS FOR FUTURE RESEARCH

It is easy to see that S2 oSk is always a subgroup of G , and Sk2 oSk+1 is a subgroup

when t is even. Perhaps the entirety of G can be found for OA(N, k, 2, t) with t > 2 .

Also, finding the LP relaxation symmetry group of the ILP formulation in [3] of an

OA(N, k, s, t) for s > 2 is an open problem. In this case, it is easy to see that Ss o Sk

is always a subgroup of this group.
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Appendix A. R CODE AND CASES

################################################################################

# Function- expandcases - generates linear combinations with positive 1st term

# Input(s)- lst - binary representation of main effects and interactions

# Output(s)- newlst - linear combinations with positive 1st term

################################################################################

expandcases<-function(lst){

ll<-length(lst)

newlst<-list()

r<-1

aa<-as.matrix(expand.grid(c(1,-1),c(1,-1),c(1,-1)))

aa<-cbind(1,aa)

for (j in 1:ll){

for (i in 1:8){

aa2<-rbind(aa[i,],lst[[j]])

dimnames(aa2)[[2]]<-NULL

newlst[r]<-list(aa2)

r<-r+1

}}

return(newlst)

}

################################################################################

# Function- allcheckbinvector - checks viability of linear combinations

# Input(s)- lst - all linear combinations to be checked

# Output(s)- displays 1s for viable combinations and 0s otherwise

################################################################################

allcheckbinvector<-function(lst){

l<-length(lst)

for (i in 1:l){

print(checkbinaryvector(lst[[i]]))

}

}

################################################################################

# Function- checkbinaryvector - checks viability of a linear combination

# Input(s)- newcik - the linear combination to be checked

# Output(s)- 1 if combination is viable, 0 otherwise

################################################################################

checkbinaryvector<-function(newcik){

newcikmat<-newcik[-1,]

newcikcoff<-newcik[1,]

pp<-dim(newcikmat)

cols<-pp[2]

pp<-pp[1]

full<-c("expand.grid(c(1,-1)")
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for (j in 1:(pp-1)){

full<-paste(full,",c(1,-1)")

}

full<-paste(full,")")

full<-parse(text = full)

full<-eval(full)

temp<-genprod(full,newcikmat[,1])

for (i in 2:cols){

temp<-cbind(temp,genprod(full,newcikmat[,i]))

}

finvec<-as.matrix(temp[,1]*newcikcoff[1])

for (i in 2:cols){

finvec<-finvec+newcikcoff[i]*temp[,i]

}

finvec<-as.matrix(as.integer(finvec/2))

if(min(finvec)==-1 & max(finvec)==1){

return(1)} else{return(0)}

}

################################################################################

# Function- genprod - computes Hadamard product

# Input(s)- full - 2-level (+/-1) full factorial design

# tt1 - indicator of which main effects are to be multiplied

# Output(s)- as.matrix(outfullcheck) - +/-1 form of main effect or interaction

################################################################################

genprod<-function(full,tt1){

outfullcheck<-full[,1]^(tt1[1])

pp<-length(tt1)

for (j in 1:(pp-1)){

outfullcheck<-outfullcheck*full[,(j+1)]^(tt1[(j+1)])

}

return(as.matrix(outfullcheck))

}

################################################################################

# Cases with 1 two-factor interaction

################################################################################

a12.1.2.3<-cbind(c(1,1,0),c(1,0,0),c(0,1,0),c(0,0,1))

c12.1.2.3<-expandcases(list(a12.1.2.3))

allcheckbinvector(c12.1.2.3)

a12.1.3.4<-cbind(c(1,1,0,0),c(1,0,0,0),c(0,0,1,0),c(0,0,0,1))

c12.1.3.4<-expandcases(list(a12.1.3.4))

allcheckbinvector(c12.1.3.4)
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a12.3.4.5<-cbind(c(1,1,0,0,0),c(0,0,1,0,0),c(0,0,0,1,0),c(0,0,0,0,1))

c12.3.4.5<-expandcases(list(a12.3.4.5))

allcheckbinvector(c12.3.4.5)

################################################################################

# Cases with 2 two-factor interactions

################################################################################

a12.13<-cbind(c(1,1,0,0,0,0),c(1,0,1,0,0,0))

a12.34<-cbind(c(1,1,0,0,0,0),c(0,0,1,1,0,0))

a12.13.1<-cbind(a12.13,c(1,0,0,0,0,0))

a12.13.2<-cbind(a12.13,c(0,1,0,0,0,0))

a12.13.4<-cbind(a12.13,c(0,0,0,1,0,0))

a12.34.1<-cbind(a12.34,c(1,0,0,0,0,0))

a12.34.5<-cbind(a12.34,c(0,0,0,0,1,0))

a12.13.1.2<-cbind(a12.13.1,c(0,1,0,0,0,0))

a12.13.1.2<-a12.13.1.2[c(1:3),]

c12.13.1.2<-expandcases(list(a12.13.1.2))

allcheckbinvector(c12.13.1.2)

a12.13.1.4<-cbind(a12.13.1,c(0,0,0,1,0,0))

a12.13.1.4<-a12.13.1.4[c(1:4),]

c12.13.1.4<-expandcases(list(a12.13.1.4))

allcheckbinvector(c12.13.1.4)

a12.13.2.3<-cbind(a12.13.2,c(0,0,1,0,0,0))

a12.13.2.3<-a12.13.2.3[c(1:3),]

c12.13.2.3<-expandcases(list(a12.13.2.3))

allcheckbinvector(c12.13.2.3)

a12.13.2.4<-cbind(a12.13.2,c(0,0,0,1,0,0))

a12.13.2.4<-a12.13.2.4[c(1:4),]

c12.13.2.4<-expandcases(list(a12.13.2.4))

allcheckbinvector(c12.13.2.4)

a12.13.4.5<-cbind(a12.13.4,c(0,0,0,0,1,0))

a12.13.4.5<-a12.13.4.5[c(1:5),]

c12.13.4.5<-expandcases(list(a12.13.4.5))

allcheckbinvector(c12.13.4.5)

a12.34.1.2<-cbind(a12.34.1,c(0,1,0,0,0,0))

a12.34.1.2<-a12.34.1.2[c(1:4),]

c12.34.1.2<-expandcases(list(a12.34.1.2))

allcheckbinvector(c12.34.1.2)

a12.34.1.3<-cbind(a12.34.1,c(0,0,1,0,0,0))

a12.34.1.3<-a12.34.1.3[c(1:4),]

c12.34.1.3<-expandcases(list(a12.34.1.3))

allcheckbinvector(c12.34.1.3)
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a12.34.1.5<-cbind(a12.34.1,c(0,0,0,0,1,0))

a12.34.1.5<-a12.34.1.5[c(1:5),]

c12.34.1.5<-expandcases(list(a12.34.1.5))

allcheckbinvector(c12.34.1.5)

a12.34.5.6<-cbind(a12.34.5,c(0,0,0,0,0,1))

a12.34.5.6<-a12.34.5.6[c(1:6),]

c12.34.5.6<-expandcases(list(a12.34.5.6))

allcheckbinvector(c12.34.5.6)

################################################################################

# Cases with 3 two-factor interactions

################################################################################

a12.13<-cbind(c(1,1,0,0,0,0,0),c(1,0,1,0,0,0,0))

a12.34<-cbind(c(1,1,0,0,0,0,0),c(0,0,1,1,0,0,0))

a12.13.14<-cbind(a12.13,c(1,0,0,1,0,0,0))

a12.13.23<-cbind(a12.13,c(0,1,1,0,0,0,0))

a12.13.24<-cbind(a12.13,c(0,1,0,1,0,0,0))

a12.13.45<-cbind(a12.13,c(0,0,0,1,1,0,0))

a12.34.56<-cbind(a12.34,c(0,0,0,0,1,1,0))

a12.13.14.1<-cbind(a12.13.14,c(1,0,0,0,0,0,0))

a12.13.14.1<-a12.13.14.1[c(1:4),]

c12.13.14.1<-expandcases(list(a12.13.14.1))

allcheckbinvector(c12.13.14.1)

a12.13.14.2<-cbind(a12.13.14,c(0,1,0,0,0,0,0))

a12.13.14.2<-a12.13.14.2[c(1:4),]

c12.13.14.2<-expandcases(list(a12.13.14.2))

allcheckbinvector(c12.13.14.2)

a12.13.14.5<-cbind(a12.13.14,c(0,0,0,0,1,0,0))

a12.13.14.5<-a12.13.14.5[c(1:5),]

c12.13.14.5<-expandcases(list(a12.13.14.5))

allcheckbinvector(c12.13.14.5)

a12.13.23.1<-cbind(a12.13.23,c(1,0,0,0,0,0,0))

a12.13.23.1<-a12.13.23.1[c(1:3),]

c12.13.23.1<-expandcases(list(a12.13.23.1))

allcheckbinvector(c12.13.23.1)

a12.13.23.4<-cbind(a12.13.23,c(0,0,0,1,0,0,0))

a12.13.23.4<-a12.13.23.4[c(1:4),]

c12.13.23.4<-expandcases(list(a12.13.23.4))

allcheckbinvector(c12.13.23.4)

a12.13.24.1<-cbind(a12.13.24,c(1,0,0,0,0,0,0))

a12.13.24.1<-a12.13.24.1[c(1:4),]

c12.13.24.1<-expandcases(list(a12.13.24.1))

allcheckbinvector(c12.13.24.1)
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a12.13.24.3<-cbind(a12.13.24,c(0,0,1,0,0,0,0))

a12.13.24.3<-a12.13.24.3[c(1:4),]

c12.13.24.3<-expandcases(list(a12.13.24.3))

allcheckbinvector(c12.13.24.3)

a12.13.24.5<-cbind(a12.13.24,c(0,0,0,0,1,0,0))

a12.13.24.5<-a12.13.24.5[c(1:5),]

c12.13.24.5<-expandcases(list(a12.13.24.5))

allcheckbinvector(c12.13.24.5)

a12.13.45.1<-cbind(a12.13.45,c(1,0,0,0,0,0,0))

a12.13.45.1<-a12.13.45.1[c(1:5),]

c12.13.45.1<-expandcases(list(a12.13.45.1))

allcheckbinvector(c12.13.45.1)

a12.13.45.2<-cbind(a12.13.45,c(0,1,0,0,0,0,0))

a12.13.45.2<-a12.13.45.2[c(1:5),]

c12.13.45.2<-expandcases(list(a12.13.45.2))

allcheckbinvector(c12.13.45.2)

a12.13.45.5<-cbind(a12.13.45,c(0,0,0,0,1,0,0))

a12.13.45.5<-a12.13.45.5[c(1:5),]

c12.13.45.5<-expandcases(list(a12.13.45.5))

allcheckbinvector(c12.13.45.5)

a12.13.45.6<-cbind(a12.13.45,c(0,0,0,0,0,1,0))

a12.13.45.6<-a12.13.45.6[c(1:6),]

c12.13.45.6<-expandcases(list(a12.13.45.6))

allcheckbinvector(c12.13.45.6)

a12.34.56.1<-cbind(a12.34.56,c(1,0,0,0,0,0,0))

a12.34.56.1<-a12.34.56.1[c(1:6),]

c12.34.56.1<-expandcases(list(a12.34.56.1))

allcheckbinvector(c12.34.56.1)

a12.34.56.7<-cbind(a12.34.56,c(0,0,0,0,0,0,1))

c12.34.56.7<-expandcases(list(a12.34.56.7))

allcheckbinvector(c12.34.56.7)

################################################################################

# Cases with 4 two-factor interactions

################################################################################

a12.13<-cbind(c(1,1,0,0,0,0,0,0),c(1,0,1,0,0,0,0,0))

a12.34<-cbind(c(1,1,0,0,0,0,0,0),c(0,0,1,1,0,0,0,0))

a12.13.14<-cbind(a12.13,c(1,0,0,1,0,0,0,0))

a12.13.23<-cbind(a12.13,c(0,1,1,0,0,0,0,0))

a12.13.24<-cbind(a12.13,c(0,1,0,1,0,0,0,0))

a12.13.45<-cbind(a12.13,c(0,0,0,1,1,0,0,0))

a12.34.56<-cbind(a12.34,c(0,0,0,0,1,1,0,0))
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a12.13.14.15<-cbind(a12.13.14,c(1,0,0,0,1,0,0,0))

a12.13.14.15<-a12.13.14.15[c(1:5),]

c12.13.14.15<-expandcases(list(a12.13.14.15))

allcheckbinvector(c12.13.14.15)

a12.13.14.23<-cbind(a12.13.14,c(0,1,1,0,0,0,0,0))

a12.13.14.23<-a12.13.14.23[c(1:4),]

c12.13.14.23<-expandcases(list(a12.13.14.23))

allcheckbinvector(c12.13.14.23)

a12.13.14.25<-cbind(a12.13.14,c(0,1,0,0,1,0,0,0))

a12.13.14.25<-a12.13.14.25[c(1:5),]

c12.13.14.25<-expandcases(list(a12.13.14.25))

allcheckbinvector(c12.13.14.25)

a12.13.14.56<-cbind(a12.13.14,c(0,0,0,0,1,1,0,0))

a12.13.14.56<-a12.13.14.56[c(1:6),]

c12.13.14.56<-expandcases(list(a12.13.14.56))

allcheckbinvector(c12.13.14.56)

a12.13.23.45<-cbind(a12.13.23,c(0,0,0,1,1,0,0,0))

a12.13.23.45<-a12.13.23.45[c(1:5),]

c12.13.23.45<-expandcases(list(a12.13.23.45))

allcheckbinvector(c12.13.23.45)

a12.13.24.35<-cbind(a12.13.24,c(0,0,1,0,1,0,0,0))

a12.13.24.35<-a12.13.24.35[c(1:5),]

c12.13.24.35<-expandcases(list(a12.13.24.35))

allcheckbinvector(c12.13.24.35)

a12.13.24.56<-cbind(a12.13.24,c(0,0,0,0,1,1,0,0))

a12.13.24.56<-a12.13.24.56[c(1:6),]

c12.13.24.56<-expandcases(list(a12.13.24.56))

allcheckbinvector(c12.13.24.56)

a12.13.45.56<-cbind(a12.13.45,c(0,0,0,0,1,1,0,0))

a12.13.45.56<-a12.13.45.56[c(1:6),]

c12.13.45.56<-expandcases(list(a12.13.45.56))

allcheckbinvector(c12.13.45.56)

a12.13.45.67<-cbind(a12.13.45,c(0,0,0,0,0,1,1,0))

a12.13.45.67<-a12.13.45.67[c(1:7),]

c12.13.45.67<-expandcases(list(a12.13.45.67))

allcheckbinvector(c12.13.45.67)

a12.34.56.78<-cbind(a12.34.56,c(0,0,0,0,0,0,1,1))

c12.34.56.78<-expandcases(list(a12.34.56.78))

allcheckbinvector(c12.34.56.78)
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